НОВОСТИ   БИБЛИОТЕКА   ЭКО СЛОВАРЬ   ЗАКОНОДАТЕЛЬСТВО  
ВАШ ВКЛАД   ИНТЕРЕСНОЕ   КАРТА САЙТА   О САЙТЕ  






предыдущая главасодержаниеследующая глава

Незримые соседи

Микроорганизмы - мельчайшие живые существа, в большинстве своем одноклеточные, были открыты голландцем А. Левенгуком в конце XVII века. Левенгук создал уникальные микроскопы, имея в объективе всего лишь одну двояковыпуклую линзу, они давали увеличение в 250-300 раз. Очень долго прогресса в изучении этого загадочного живого мира не наблюдалось, пока гениальный французский ученый Л. Пастер не проник в тайны многих процессов в природе, регулируемых микробами. К этому времени, середине XIX века, были созданы вполне пригодные для повседневной работы микроскопы, а знаменитый немецкий микробиолог Р. Кох, современник Л. Пастера, придумал ряд простых приемов, позволяющих не только изучать, но и культивировать микробы. Эти приемы используются в лабораториях и поныне.

Незримый мир бактерий, риккетсий, вирусов, лучистых грибков и плесневых грибов, дрожжей и других микроорганизмов повсюду окружает нас. Воздух, которым мы дышим, вода в прудах, озерах, морях и океанах, почва, дающая жизнь растительному царству, руда, из которой выплавляется металл, пищевые продукты, приобретенные на рынке или в магазине, книга, которую мы читаем, и рука, переворачивающая очередную страницу, густо населены микроорганизмами. Они живут в самой глубокой океанской впадине и на высочайшей земной вершине - Эвересте, их находят во льдах Арктики и Антарктиды и в подземных источниках горячих вод. Их обнаружили в пробах воздуха, взятых на высоте 5 километров геофизическими ракетами, и в охладительных контурах атомных реакторов.

Тысячи лет назад люди научились использовать процессы брожения для получения сыра, кваса, хлеба. Но то, что брожение вызывают особые микробы и что они обычный компонент почвенной микрофлоры, стало известно лишь в середине прошлого века благодаря гигантским успехам микробиологии.

Основы ее заложил Л. Пастер. Остроумнейшими опытами он опроверг прежнее представление о самозарождении микробов. Ученый показал, что брожение, гниение и заразные болезни вызываются особыми микробами. Он предложил простые способы обеззараживания продовольственных продуктов и хирургических инструментов; эти способы с тех пор так и называются по имени автора - пастеризацией.

В мире микробов действуют те же законы, что и в остальной живой природе. И здесь идет жестокая повседневная борьба за существование, борьба за пищу и место, за право оставить потомство.

У микробов для защиты и нападения есть и свое оружие. Это химические вещества, которые образуются и накапливаются внутри клетки или выделяются в окружающую среду. Но микробы враждуют не только с внешним миром, а и между собой. Этот антагонизм между микроорганизмами как внутри одного вида, так и менаду разными видами отметил впервые Л. Пастер в 1877 году.

И вскоре возникла мысль использовать этот антагонизм для лечения инфекционных заболеваний. Ее всесторонне и глубоко обосновал И. И. Мечников. Он доказал, что молочнокислые микробы подавляют развитие вредных гнилостных бактерий, обитающих в кишечнике животных и человека. Ученый полагал, что хроническое действие ядовитых продуктов гниения и масляно-кислого брожения в кишечнике приводит к преждевременному старению. И он предложил использовать болгарскую простоквашу и применяющиеся при ее изготовлении молочнокислые бактерии для лечения кишечных заболеваний. Это была первая в истории науки успешная попытка применения микробов-антагонистов и продуктов их жизнедеятельности для лечения и предупреждения заболеваний, вызванных другими микробами.

В Пастеровском институте, созданном в 1888 году в Париже на средства, собранные по международной подписке, была организована и первая в мире лаборатория почвенной микробиологии. Ее возглавил русский ученый С. П. Виноградский (1856-1953). Основоположник почвенной микробиологии, он в 1890-1892 годах доказал, что микроорганизмы могут создавать органическое вещество из неорганического соединения - углекислоты, используя энергию окисления минеральных веществ, например окисления аммиака в азотную кислоту. А в 1953 году, также впервые в мире, была организована кафедра микробиологии почв на биолого-почвенном факультете Московского государственного университета имени М. В. Ломоносова. Первым заведующим кафедрой стал Н. А. Красильников - член-корреспондент Академии наук СССР, удостоенный в 1951 году Государственной премии СССР за работы по изучению микробов как организмов, способных создавать антибиотики.

Незримые соседи
Незримые соседи

Мы редко задумываемся о том, насколько лик нашей планеты зависит от деятельности микробов. А между тем именно эти организмы, появившиеся задолго до растений и животных, смогли из газов первичной атмосферы Земли (метана, водорода, аммиака, углекислоты, водяного пара) образовать ту привычную для нас атмосферу, где 78 процентов приходится на молекулярный азот, а 21 - на кислород. Со временем высшие растения заняли место микробов, которые, правда, тоже могли использовать солнечный свет, но, вероятно, не столь эффективно. Однако высшие растения не способны усваивать молекулярный азот, и без содружества с микробами они не смогли бы существовать долгое время. А животные?

Микроорганизмы населяют желудочно-кишечный тракт животных и человека, и без них невозможны важные биохимические процессы превращения веществ, биосинтез аминокислот, витаминов и других необходимых биологически активных соединений. Почвенные микробы также тесно взаимодействуют с почвенными животными. Еще в начале нашего века известный польский микробиолог К. Бассалик исследовал микробы, обитающие в кишечном канале дождевых червей. В ту пору было известно, что черви пропускают через кишечник огромное количество земли, но никто не знал, как это отражается на почве. К. Бассалик доказал, что в кишечнике червей происходит гумификация - превращаются в перегной такие органические соединения, как целлюлоза, лигнин, гемицеллюлоза, и что в этой специфической среде постоянно обитает около 90 видов микробов.

Позднее подобные наблюдения проводились и над другими животными. Оказалось, например, что у термитов, являющихся основными разрушителями растительного опада (опавших листьев, плодов, ветвей) в тропиках, жизнь и пищеварение целиком зависят от микроорганизмов, которые обитают в кишечниках этих насекомых.

Очень показателен пример жвачных животных. В обиходе принято считать, что они питаются растительной пищей - травой, сеном, силосом и т. д. На самом деле теленок, корова, так же как ягненок или баран, усваивают в основном не сами растительные корма, а продукты переработки этих кормов микробами (бактериями, инфузориями, грибками, в том числе дрожжами).

Трава, сено, силос, съеденные теленком, коровой или быком, после разжевывания попадают в преджелудки, рубец, сетку и книжку, где становятся добычей великого множества микробов. Преджелудки и главная их часть - рубец - это не что иное, как своего рода биохимический завод, в котором мириады микробов днем и ночью преобразуют углеводистые и азотистые вещества кормов в высокоценный белок, аминокислоты, витамины и другие питательные вещества, необходимые для нормальной жизнедеятельности организма животного.

У взрослых быка или коровы емкость рубца составляет от 100 до 250 литров, а в каждом миллилитре рубцовой жидкости насчитывается от 8 до 15 миллиардов бактерий, иногда же их количество достигает 40-46 миллиардов. Под действием микробных ферментов в преджелудке переваривается от 70 до 80 процентов сухих веществ корма. Полагают, что от 50 до 80 процентов азотистых веществ рациона перерабатывается в микробный белок, который и служит для животного организма источником аминокислот.

Таким образом, жвачные животные питаются не столько белком кормов, сколько более ценным белком микроорганизмов. В рубце коровы за сутки синтезируется от 700 до 900 граммов бактериального белка, а в рубце овцы - от 20 до 100 граммов. При среднем удое в 20 килограммов корова выдает с молоком за сутки около 700 граммов белка. Следовательно, этот расход может полностью покрываться микробным белком, поступающим из рубца. Поэтому экологи говорят о "внутренних пищевых цепях" в организме жвачных. Но такие же процессы свойственны и другим травоядным животным, том числе многим почвенным, которые заметную часть белкового питания получают, переваривая микробов. Трофические (пищевые) цепи всего населения планеты начинаются с растений и микроорганизмов, которые в результате фотосинтеза или хемосинтеза продуцируют, создают из простых минеральных веществ очень сложные органические вещества, богатые связанной энергией солнечных лучей или химических соединений.

Далее пищевые цепи включают растительноядных животных. Они поедают организмы, создающие первичное органическое вещество (продуценты), и, в свою очередь, служат пищей для плотоядных (например, мелких хищников, которые часто сами становятся кормом для более крупных хищников, настигающих свою жертву на лету, на бегу или в воде). Сюда же относятся паразиты животных.

Замыкают пищевые цепи сапрофаги (от греческих слов "сапрос" - гнилой и "фагос" - пожиратель). В основном это микроорганизмы - бактерии и грибы, которые питаются трупами, растительным опадом, постепенно разлагая, минерализуя органические вещества и возвращая их в мир неживой природы. Среди сапрофагов - множество почвенных животных, которые переваривают мертвые ткани растений вместе с заселяющими их микробами. Но окончательное разложение и самих животных - сапрофагов, и их экскрементов выпадает на долю микробов.

Академик А. М. Уголев обратил внимание, что процессы поглощения и распада органических веществ в природе на всех уровнях трофической цепи, на всех уровнях организации биологических систем имеют очень много общего. Сейчас происходит становление новой научной дисциплины - трофологии, которая изучает закономерности ассимиляции (то есть поглощения и усвоения) веществ живыми организмами на всех уровнях.

Доказано, что, несмотря на фантастическую разницу в масштабах явлений, которые происходят на клеточном уровне, в организме или в биосфере в целом, многие закономерности ассимиляции универсальны. Взять хотя бы такой процесс, как деполимеризация (гидролиз, переваривание) пищевых продуктов, в результате чего уничтожается их специфичность, принадлежность определенному виду животных или их органу, и образуются такие формы утилизируемых веществ, которые могут транспортироваться через клеточные мембраны. Сравнительно недавно стало понятно, что у всех живых организмов - от бактерий до млекопитающих - есть три основных типа пищеварения: внеклеточное, мембранное и внутриклеточное.

При внеклеточном пищеварении клетка выделяет растворимые ферменты "наружу", где они разрушают крупные молекулы или агрегаты пищевых веществ, осуществляют их начальное переваривание. Ферменты, которые связаны с клеточной мембраной, гидролизуют мелкие молекулы и способствуют всасыванию полученных полупродуктов. После того как эти вещества проникли внутрь клетки, их переваривание завершают ферменты в цитоплазме или в специальных полостях - вакуолях.

Поразительно сходны у всех живых существ, включая бактерии и дрожжи, механизмы переноса пищевых веществ через клеточные мембраны. Это единство механизмов переваривания пищи, как и единство химического состава организмов, является основой, на которой разные живые существа могут находить между собой "общий язык", совместно или поэтапно ассимилировать одну и ту же пищу, например растительные ткани.

Но нам бы хотелось обратить внимание на другое: именно благодаря деятельности микроорганизмов смогла возникнуть на суше основа существования растений, животных и человека - плодородная почва. Не случайно в земледелии многие приемы агротехники направлены на создание благоприятных условий для деятельности почвенной микрофлоры, от которой зависит урожай.

По своей численности и плодовитости микробы значительно превосходят все другие организмы, вместе взятые. И по своим функциям микробы служат опорой всего живого - ведь они важнейшие звенья в круговороте веществ на планете. Да и по возрасту они самые древние среди живых существ.

И вот что любопытно: животные и растения не могут существовать ни друг без друга, ни без микробов. Микробы же не нуждаются в чужих соседях. Два миллиарда лет назад только они одни и существовали на нашей планете. Все другие формы жизни возникли не более одного миллиарда лет назад, причем и растения и животные могли произойти лишь от тех же самых микробов.

С микробами теснейшим образом связаны и высшие растения.

В середине XIX века одной из острых проблем практического земледелия было обеспечение почвы азотом в доступной растениям форме (атмосферный молекулярный азот они не усваивают). И здесь давний практический опыт заставил приглядеться к бобовым растениям, особенно к клеверу, поскольку было доказано, что они обогащают почву азотом. Но как это происходит?

Руководитель одной из сельскохозяйственных опытных станций в Германии Г. Гельригель в 80-х годах прошлого столетия обнаружил, что атмосферный азот бобовые растения усваивают благодаря особым клубенькам на их корнях. Гельригель предположил, а затем доказал экспериментально, что фиксируют азот не сами бобовые растения, а какие-то еще неизвестные в то время микроорганизмы, которые являются симбионтами (сожителями) растений.

Заслуга же открытия клубеньковых бактерий принадлежит русскому микробиологу М. С. Воронину, который в 1866 году опубликовал подробнейшее описание возникновения клубеньков на корнях ольхи и люпина и развития микроорганизмов в этих клубеньках. Гельригель знал о работах Воронина и опирался на установленные им факты. Работы Воронина вызвали оживленную полемику в научных кругах: не все приняли его вывод о бактериальном происхождении клубеньков, некоторые полагали, что здесь присутствуют споры гриба или же "выродившиеся" грибы.

Вопрос этот окончательно решен был лишь выдающимся голландским микробиологом М. Бейеринком, который взялся проверить данные Воронина. Довольно быстро Бейеринк убедился, что в клубеньках бобовых живут действительно бактерии, но он пошел значительно дальше и получил чистую культуру этих бактерий в специально разработанной им самим среде. В своем капитальном исследовании "Бактерии из клубеньков бобовых растений", опубликованном в 1888 году, Бейеринк подробно описал выделенную бактерию и дал ей латинское название бациллюс радициола (корневая бацилла).

Между тем агрохимики доказывали, что в почвах происходит накопление азота и без участия бобовых растений. Например, А. Н. Энгельгардт, ученый-химик, пропагандист агрохимии в России, автор популярной в свое время книги "Химические основы земледелия", утверждал, что луга обогащаются азотом независимо от наличия бобовых культур. Такие же наблюдения были сделаны в Германии, Франции и Англии. И только после того, как С. Н. Виноградский показал, что выделенная им бактерия клостридиум может усваивать молекулярный азот воздуха, а затем и получил эту бактерию в чистой культуре, наука и земледелие получили ясный ответ: связанным азотом, который доступен растениям, почву обогащают микроорганизмы.

Но благотворное влияние невидимок на почву, а следовательно, и на весь зеленый мир планеты не ограничивается фиксацией молекулярного азота. Микробы разрушают трупы животных, остатки корней, стеблей и листьев растений и превращают мертвое органическое вещество в плодородный гумус, или перегной. Многие органические вещества они преобразуют в более простые минеральные вещества, растворимые в воде и поэтому доступные для растений.

Так обеспечивается на Земле непрерывность процессов образования все новой и новой органической, живой материи. И неудивительно что многие приемы современной агротехники направлены на интенсификацию микробиологических процессов в почве.

предыдущая главасодержаниеследующая глава









© ECOLOGYLIB.RU, 2001-2020
При использовании материалов сайта активная ссылка обязательна:
http://ecologylib.ru/ 'Зелёная планета - экология и охрана природы'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь