НОВОСТИ   БИБЛИОТЕКА   ЭКО СЛОВАРЬ   ЗАКОНОДАТЕЛЬСТВО  
ВАШ ВКЛАД   ИНТЕРЕСНОЕ   КАРТА САЙТА   О САЙТЕ  






предыдущая главасодержаниеследующая глава

Белое солнце пустыни

Если попросить человека, впервые побывавшего в Каракумах или в Кызылкумах и в Каршинской или Голодной степи, рассказать о главных своих впечатлениях, то он наверняка прежде всего вспомнит сильнейшую жару. Вспомнит беспощадное белое Солнце пустыни, которое, в его представлении, просто уничтожает, испепеляет все живое, делает человека слабым и беспомощным, сочную зелень растений превращает в желтую труху. И специалист, занимающийся освоением пустынных территорий, видимо, в числе первых по важности природных факторов пустыни назовет интенсивное солнечное излучение. Однако даст ему высокую положительную оценку. Специалист отметит, что Солнце создает в пустыне огромные термические ресурсы, они особенно эффективно используются в районах с изобилием воды, но могут быть неплохо утилизированы и в безводных районах.

Белое солнце пустыни
Белое солнце пустыни

Достаточно вдуматься в соотношение всех "за" и "против", вспомнить о том, как использует солнечную энергию живая природа и как учится пользоваться ею человек, чтобы понять - Солнце действительно огромное богатство пустыни. Пожалуй, даже главное ее богатство. Потому что Солнце - это энергия. Та самая энергия, которая есть один из основных компонентов развития растительного мира, превращения мертвого набора химических элементов в зеленый лист, в коробочку белоснежного хлопка, в золотистое зерно. Та самая энергия, которая жизненно необходима человеку для создания "второй природы" - заводов, машин, новых материалов.

Солнце - одна из бессчетных звезд вселенной. Вот уже несколько миллиардов лет в солнечных недрах идут термоядерные реакции, водород превращается в гелий, к за счет этого выделяются огромные количества энергии. Общую тепловую мощность нашего Солнца представить себе довольно трудно - если бы мы захотели отметить, во сколько раз оно мощней всех земных электростанций, то должны были бы назвать число с четырнадцатью нулями. Земля - маленький шарик, расположившийся на расстоянии 150 миллионов километров от Солнца, и поэтому нашей планете достается очень малая часть солнечной энергии: менее чем миллионная доля процента. Но даже и этого количества вполне хватает, чтобы согреть Землю солнечным теплом, дать жизнь растениям, прокормить человечество, запасти в земных недрах уголь, нефть, газ.

Разным участкам земного шара достаются различные порции солнечного тепла и света главным образом потому, что они под различными углами подставлены солнечным лучам. На территории, не слишком далекие от экватора, солнечное излучение в полдень падает практически под прямым углом, и каждый квадратный метр там получает максимум того, что вообще можно получить на данном расстоянии от Солнца. А чем ближе к полюсам, тем меньше угол, под которым солнечный луч встречается с Землей, тем меньше тепла и света сюда доходит.

На московской параллели каждому квадратному метру Земли достается примерно в два раза меньше солнечной энергии, чем в районе экватора, а на параллели Мурманска - почти в четыре раза меньше. Пустыни, как известно, все находятся в довольно низких широтах, в районах, сравнительно недалеко отстоящих от экватора, а нередко и в самих экваториальных зонах. И поэтому пустынные территории очень богаты солнечным теплом, они получают его почти максимально возможное количество.

Специалисты разных профессий по-разному оценивают солнечную активность на той или иной территории, разными мерками определяют количество солнечного света и тепла, которые этой территории достаются. Кинематографисты, например, удовлетворяются числом солнечных дней в году - им не так важно, холодно или тепло, важно лишь, чтобы яркое Солнце создавало благоприятные условия для съемок.

Специалисты в области сельского хозяйства оценивают работу Солнца средней суммарной температурой для данной территории. Не самым жарким днем, не самым холодным, а именно суммарной температурой - она показывает общее количество тепла, которое достается данной территории за год, за месяц или ля сельскохозяйственный сезон. Как говорится, день на день не приходится, сегодня может быть очень жарко, завтра прохладнее, сегодня безоблачное небо, а завтра пасмурное. Но растения развиваются не по такому уж строгому графику, им важно суммарное количество тепла и света, полученное за период вегетации, то есть за период роста и развития. А об этом как раз и может рассказать суммарная температура. Найти ее достаточно просто - нужно сложить среднесуточные температуры интересующего вас месяца или части года. Цифры получаются большие - суммарная месячная температура может исчисляться сотнями градусов, суммарная годовая - тысячами.

Ну и, наконец, инженеры чаще всего оценивают обеспеченность данной территории солнечной энергией по тому, сколько ее приходится на квадратный метр земной поверхности: по суммарной годовой энергии з джоулях на квадратный метр или в килокалориях на квадратный метр. Или по мощности, по числу ватт, которые достаются квадратному метру поверхности в среднем за год или за один солнечный день того или иного месяца.

Точкой отсчета может служить так называемая солнечная постоянная - количество лучистой солнечной энергии, которое падает на единицу поверхности, подставленной перпендикулярно солнечным лучам на границе земной атмосферы. То есть солнечная постоянная показывает тот максимум, который могла бы получать Земля в районах, достаточно близких к экватору, если бы ничего не терялось в атмосфере. После несложных пересчетов можно получить, что солнечная постоянная соответствует мощности 1353 ватта на квадратный метр или энергии 4871 килоджоуля на квадратный метр в час. На земной поверхности эти показатели заметно меньше. Даже для районов большинства пустынь солнечную радиацию можно грубо оценить величиной в 1000 ватт, то есть один киловатт на квадратный метр. Правда, эта цифра относится только к полудню, в более ранние часы и в более поздние Земля получает значительно меньше энергии. Но даже с учетом этого солнечная энергия, которую получает каждый квадратный метр поверхности среднеазиатских пустынь за один солнечный день, могла бы заменить примерно пол-литра бензина. И если бы энергия солнечных излучений без потерь превращалась бы в это автомобильное топливо, то установка, улавливающая солнечную энергию на площади в 20 квадратных метров, то есть занимающая крышу автобуса, ежедневно добавляла бы в бензобак 10 литров бесплатного бензина.

Каким бы заманчивым ни казалось прямое и без потерь получение нефтепродуктов из солнечных лучей, подобные энергетические процессы относятся пока к области фантастики. Одним из самых выгодных способов использования солнечной энергии пока остается выращивание тех или иных сельскохозяйственных культур. Этот путь ведет и к некоторым интересным решениям энергетических проблем. В Бразилии ведутся работы по переводу автомобильного транспорта с бензина на этиловый спирт. Его будут получать из специально выращиваемых кустарников, дающих без особых затрат очень большой прирост биомассы. В процессе ее переработки спирт образуется из природных углеводородов растительного происхождения, которые, в свою очередь, появились за счет солнечной энергии, поглощенной растением. Кстати, вообще все виды горючего, используемого человеком, кроме атомного горючего - урана, своим появлением обязаны Солнцу. Не только прозаическая древесина, но и нефть, газ, уголь - это не что иное, как "солнечные консервы". Согласно теории органического происхождения горючих ископаемых в их химической структуре как бы законсервирована энергия Солнца, накопленная в далекие времена в биологической массе растений и животных.

Но оставим пока в стороне энергетику. Обратим свой взор к тем представителям растительного мира, которые кормят нас и одевают. Тот факт, что Солнце совершенно необходимо для созревания хлебного колоса и виноградной лозы, люди знают с незапамятных времен. Но особый интерес к этой зависимости проявляется в последние столетия, когда человек решил повнимательней присмотреться к природе. И вот выясняется, что достающееся растениям количество солнечного света и тепла не просто влияет на развитие зеленого мира, а влияет чрезвычайно сильно. Подлинную сенсацию произвело открытие заметной связи между солнечной активностью и ценами на пшеницу на мировом рынке. Проанализировав изменение этих цен в период с 1750 по 1900 год, получили график, в котором явно наблюдались резкие скачки цен, происходившие регулярно каждые 11 лет. Они совпадали с известными одиннадцатилетними циклами солнечной активности, о которой астрономы прошлых веков судили по количеству солнечных пятен. А в период с 1800 по 1830 год, когда среднее число солнечных пятен резко уменьшилось, мировые цены на пшеницу подскочили в 2-3 раза.

Сейчас мне хотелось бы несколько отвлечься от нашей основной темы и напомнить о курьезном случае, поучительном для тех, кто собирается работать в науке, и даже для тех, кто просто интересуется научными сенсациями. Сравнительно недавно один английский ученый, развивая популярные в наше время исследования, призванные выявить влияние Солнца на земную жизнедеятельность, решил проанализировать статистику рождаемости детей. И выявил, что рождаемость сильно зависит от погоды - в ясные, солнечные дне детей рождается значительно больше, чем в пасмурные, дождливые. Полученные данные были опубликованы, и кое-кто даже нашел им объяснение. Но вот один из сотрудников ученого, не сумев объяснить эту странную зависимость, стал тщательно проверять исходный материал. И обнаружил, что первичные данные относились не к самому факту рождения ребенка, а к его официальной регистрации. А эту операцию можно очень просто связать с погодой - в дождливый день родители просто стараются не выходить из дому. С регистрацией ребенка особой спешки нет, и люди ждут день-другой, чтобы не мокнуть под дождем.

Этот курьез напоминает лишь, как опасно делать выводы, не убедившись в правильности предпосылок. И он, конечно, не имеет никакого отношения к твердо установленному влиянию солнечной радиации на жизнь растений. Хотя бы потому, что биохимики в деталях выяснили, как именно солнечный луч участвует в развитии растения, в накоплении зеленой массы и созревании плодов.

Среди огромного многообразия сельскохозяйственных культур есть такие, которые произрастают только в районах с очень теплым климатом или, как мы теперь можем сказать, в районах с высокой суммарной температурой. Мы уже говорили, что в нашей стране главным образом на пустыни приходятся основные территории с высокими суммарными температурами, необходимыми для таких культур, как хлопок, кофе, цитрусовые. Орошая эти территории, мы получаем сельскохозяйственные земли, можно сказать, неповторимые.

Но и в части солнечного тепла, или, как сказал бы специалист, в части тепловых ресурсов, пустыни тоже бывают разные. В пустынях западнее и восточнее Аральского моря сумма температур, превышающих порог "плюс десять градусов", лежит в пределах 3500-4000 градусов. Километров на сто южнее сумма температур достигает уже 4500-5000, а еще через сотню-другую километров - 5000 градусов. На юго-западе Туркменской ССР есть районы с суммарными температурами, заметно превышающими 6500 градусов.

Вообще же границы районов с разными суммарными температурами нередко имеют довольно сложную конфигурацию, и бывает, что территории, расположенные не так уж далеко одна от другой, по термическим ресурсам различаются весьма заметно. На суммарные температуры влияют и такие природные факторы, как медленные изменения климата, изменение солнечной активности в соответствии с одиннадцатилетними циклами и, наконец, некоторые антропогенные процессы. Установлено, что интенсивное орошение может снижать суммарную температуру на несколько градусов. Это вполне понятно: там, где есть влага, происходит ее испарение, а всякое испарение сопровождается понижением температуры. Такое снижение неприятно, но неизбежно - без орошения районы с высокими суммарными температурами для сельскохозяйственного производства вообще бесполезны.

Точно промеренные и подсчитанные суммарные температуры не есть какие-то отвлеченные географические характеристики. Эти цифры строго ограничивают возможности выращивания тех или иных культур, и их никак не обойдешь даже при наличии всех других благоприятных факторов. Лучшим тонковолокнистым сортам хлопчатника нужен очень жаркий климат, нужны суммарные температуры не менее 4900 градусов. Температуры на несколько сот градусов ниже позволяют выращивать только скороспелые, менее ценные средневолокнистые сорта хлопчатника. А районы с температурами ниже 4000 градусов для хлопка вообще непригодны, хотя там могут с успехом выращиваться некоторые сорта винограда.

На орошаемых пустынных землях (правильнее было бы сказать, бывших пустынных землях) посевы хлопчатника чередуются с посевами кормовой культуры люцерны - такие севообороты улучшают почву, снижают ее засоленность и, кроме того, позволяют создавать комплексные хозяйства, где хлопководство сочетается с животноводством. Так вот и для люцерны далеко не безразлично количество солнечного тепла: при суммарных температурах 4900 градусов она растет очень быстро, и за лето можно сделать до семи укосов люцерны. А при температурах около 4000 градусов - только до четырех.


В целом же нужно сказать, что все лустынные территории, которые удается оросить и превратить в плодородные поля, великолепно обеспечены солнечной энергией. И пусть не везде здесь может расти южанин хлопчатник, но зерновые культуры, фрукты, овощи, бахчевые, наконец, травы, идущие на корм скоту, получат столько жаркого солнца, что смогут давать по два, а некоторые и по три урожая в год, если будет достаточно воды.

Главное, что нужно растению, - это солнце, воздух, вода и, конечно, почва. Солнце дает энергию, необходимую для того, чтобы соединить имеющиеся химические элементы, собрать из них белки, жиры, углеводы. Вода входит в состав растительных клеток, выполняет транспортные функции, доставляя те или иные вещества на место стройки, туда, где идет синтез органических соединений, создаются архитектурные шедевры зеленого мира. Воздух дает растению углерод - важнейший химический элемент, необходимый для строительства растительной ткани.

Многие вещества, тоже совершенно необходимые для строительства живой материи, растение получает из почвы. Взять, к примеру, азот - обязательный элемент любой белковой молекулы, а также молекул нуклеиновых кислот. Он входит в важнейшие для всего живого молекулярные конструкции в заметных количествах, и, казалось бы, растения и животные не должны чувствовать в нем недостатка: азота очень много в воздухе, по объему примерно 80 процентов. Но извлекать его из воздуха растения не умеют, они получают его из почвы, так же как фосфор и калий, их тоже немало идет на строительство растительной ткани. А еще растение берет из почвы микроэлементы, такие, как медь, железо, марганец, серебро. Хотя они нужны растению в очень малых, просто-таки микроскопических количествах (за что и получили название микроэлементов), но без них растение развиваться не может.

Однако обязательно ли получать все это из почвы? Живут же морские растения, прикрепившись к сваям причалов или каменистым берегам. Они обходятся без земли...

Гидропоника - так назвали (от греческих слов "гидро" - вода и "поника" - работа) методы выращивания сельскохозяйственных культур без почвы, без земли. Ее заменили определенными химическими растворами, в которых в удобном виде содержатся все необходимые растению вещества. Гидропоника - дело непростое, особенно если применять ее в больших масштабах. Но есть у нее несколько достоинств первостепенной важности. Прежде всего она позволяет точно дозировать все потребляемые растением вещества, не растрачивать ценные питательные вещества на кормежку сорняков или иных паразитов. И не выбрасывать с трудом добытые удобрения, как это, к сожалению, неизбежно происходит сегодня, - заметная часть внесенных в почву химикатов вымывается дождями и уносится в реки и моря.

И, видимо, одним из первых кандидатов для практического применения гидропоники могут быть некоторые пустыни. В окрестностях города Шевченко, который окружен в основном сильно засоленными почвами, уже несколько лет проводятся опыты по выращиванию овощей на гравии. Гидропонные плантации занимают участок площадью пять тысяч квадратных метров, то есть примерно с футбольное поле. Там же пробовали выращивать методами гидропоники зерновые культуры, используя их как добавку в корм скоту. Наконец, значительный интерес представляют эксперименты по выращиванию хлореллы - водоросли, которая содержит много питательных веществ, может оказаться хорошей кормовой добавкой и, ко всему, еще отличается большой скоростью образования биомассы. Хлореллу выращивают в установках, где вообще главное действующее лицо - солнечное освещение. И если исследования завершатся успешно, лучшего места, чем пустыня, для выращивания хлореллы не найти. И солнца хватает, и потребители кормов недалеко.

Наряду с различными отраслями сельского хозяйства на пустынные территории, богатые "солнечным сырьем", могут претендовать и другие отрасли. В том числе малая энергетика. И даже большая. Мы убедимся в этом, отправившись еще на одну экскурсию. Насей раз наш путь лежит в научный центр, где разрабатывается широкий круг проблем, связанных с использованием солнечного тепла и света.

Выехав из Ашхабада в направлении местечка Бекрава, примерно на восьмом километре шоссе издалека виден необычный дорожный знак - большой желтый круг с расходящимися во все стороны лучами. Если подъехать поближе и прочитать надпись внутри круга, обнаружится, что это не дорожный знак, а творение людей веселых и изобретательных - вывеска солидного научного учреждения. На ярко-желтом фоне четкими буквами написано название, подобного которому нигде больше не увидишь, - Институт солнечной энергии. Этот единственный в своем роде институт входит в состав Академии наук Туркменской ССР, в его тематике отражены практически все основные направления научных исследований, ставящих своей целью использовать огромное богатство, доставшееся нашим пустыням, - энергию солнечных лучей.

На первый взгляд может показаться, что никакие новые исследования в этой области не нужны. Потому что люди уже давно умеют превращать свет и тепло в электричество. Чтобы убедиться в этом, достаточно посмотреть, как отклоняется под действием падающего света стрелка фотоэкспонометра. Или взглянуть на прямоугольные ячеистые панели, которые разместились на площадке недалеко от входа в институт. Это солнечные батареи, они очень похожи на огромные крылья, которые вы не раз видели на снимках различных космических аппаратов. "Крылья" - панели фотоэлементов, их смело можно назвать солнечными электростанциями космических кораблей, так как они сами, без посредников превращают свет, который на них падает, в электрическую энергию. Ее хватает и на освещение космического дома, и на работу многочисленных бортовых агрегатов, научных приборов, средств радиосвязи, систем жизнеобеспечения.

И казалось бы, чего проще: ставь на бесплодные пески пустыни такие же солнечные батареи, перехватывай ими падающую на Землю солнечную энергию и получишь электрическую энергию, которую можно пустить и на подъем воды из колодцев, и на опреснение ее, и на освещение домов. А поскольку неиспользуемых песчаных пустынь пока еще достаточно много, то можно, видимо, с помощью фотоэлектрических преобразователей получать настолько много энергии, что ее хватит для электроснабжения ближайших городов и промышленных предприятий. Будем считать, что в среднем мощность солнечного излучения, учитывая суточную неравномерность, составляет 10 процентов от солнечной постоянной, то есть примерно 100 ватт на квадратный метр. Тогда получится, что с квадратного километра пустыни (это миллион квадратных метров) можно было бы получить примерно 100 тысяч киловатт электрической мощности. Ее вполне хватило бы для энергоснабжения небольшого города.

Последние фразы, как вы, конечно, заметили, построены в сослагательном наклонении, с использованием частицы "бы". Потому что в нашем простейшем расчете не учтен один очень важный показатель, и это делает весь расчет неверным. Мы не учли коэффициент полезного действия фотоэлектрических преобразователей, считали, что он равен 100 процентам, то есть что вся солнечная энергия целиком превращается в электрическую. В действительности же даже лучшие современные полупроводниковые фотоэлементы превращают в электричество пока примерно 10 процентов падающей на них солнечной энергии, а рядовые, серийные преобразователи имеют коэффициент полезного действия процентов пять-шесть.

Если учесть эту невеселую реальность, то получится, что с квадратного километра пустыни мы можем получить максимальную мощность не 1 миллион, а лишь 50-60 тысяч киловатт электрической мощности. И это, между прочим, тоже было бы неплохо, если бы сами фотоэлементы стоили дешевле, пока же цена их настолько высока, что о широком использовании специалисты и не говорят. Кое-кто из них полагает, что полупроводниковый элемент станет выгодным для солнечной энергетики прибором, если стоимость его будет снижена на два порядка. То есть примерно в 100 раз.

Где же выход? Неужели заманчивая идея использования бесплатного и бесполезно теряемого в пустыне солнечного тепла не может быть реализована? Неужели техника не предлагает никаких реальных возможностей.

Возможностей таких, оказывается, существует несколько. И на разных направлениях ведутся исследовательские работы, предпринимаются практические попытки впрячь Солнце в упряжку полезных дел. В Институте солнечной энергии есть площадки, на которых расположились самые разные системы преобразователей солнечной энергии. Это настоящий полигон, где ведущие научные центры страны проверяют свои разработки.

Энергично в последнее время идет совершенствование самих фотоэлектрических преобразователей как по снижению их стоимости, так и повышению коэффициента полезного действия. Результаты могут быть получены только в фундаментальных физических исследованиях, затрагивающих самые тонкие механизмы взаимодействия излучений с веществом. Известно, что физики не любят давать широковещательных обещаний, но, видимо, какие-то надежды на серьезное улучшение важнейших характеристик фотоэлемента все-таки имеются. Во всяком случае, в последние годы в этой области заметен явный прогресс: еще не так давно коэффициент полезного действия полупроводникового фотоэлемента находился где-то в районе одного процента.

Даже при нынешних не слишком высоких технических и экономических показателях применение солнечных батарей может оказаться в некоторых случаях целесообразным. Во Всесоюзном институте источников тока создана электродиализная опреснительная установка, получающая питание от солнечных батарей общей площадью 4,5 квадратных метра. Они развивают мощность 200 ватт. Панели солнечных батарей расположены на поворотных фермах, вся система автоматически поворачивается вслед за Солнцем, когда оно движется по небосводу. Благодаря этому установка всегда перехватывает максимум солнечной энергии, которую можно уловить в данный момент. Кстати, этот институт создал в Ашхабаде базовую лабораторию по преобразованию солнечной энергии в электрическую.

Полученное от солнечного электрогенератора постоянное напряжение в 50 вольт подводится к злектро-диализному опреснителю. При солености исходной воды в 16 граммов на литр опреснитель выдает 9 литров почти совершенно пресной воды в час. Энергия для опреснения практически ничего не стоит - солнечная энергия пока еще не регистрируется счетчиком и платить за нее ничего не нужно. Однако начальная стоимость опреснителя довольно велика, и его целесообразно применять лишь в случаях, когда другие способы получения пресной воды обходятся еще дороже.

Другой аппарат, использующий электроэнергию, полученную непосредственно от солнца с помощью фотоэлементов, - водоподъемник для колодцев, расположенных на пустынных пастбищах. В нем воду на поверхность поднимает не традиционный насос с расточительным электромотором, а электроосмотический водоподъемник. В его камерах, разделенных пористой перегородкой, вода поднимается вверх за счет электрической энергии, которую дает фотоэлектрический генератор. Для подъема воды используется известное явление электроосмоса - перемещение жидкости по капиллярам или по порам диафрагмы под действием приложенного электрического напряжения. Модель такого водоподъемника показала, что превращенная в электричество солнечная энергия, собранная с площади в несколько квадратных метров, сможет за один день поднять примерно тонну воды из колодца глубиной 20 метров. Заметьте - все эти тонкие физические процессы, такие, как фотоэлектрический эффект или электроосмос, испытаны там, где еще недавно воду вытаскивали из колодцев в кожаных мешках с помощью такой энергетической системы, как медлительный верблюд.

Уже есть примеры, пока, правда, немногочисленные, практического использования фотоэлектрических солнечных генераторов. В пустынях Австралии, в частности, они дают энергию необслуживаемым станциям радиорелейных линий связи. Водоподъемники, питаемые солнечной энергией, работают на нескольких американских фермах, расположенных в засушливых районах. Самая крупная опытная станция, вырабатывающая электроэнергию с помощью фотоэлементов, пока построена в одной из мексиканских пустынь, где панели солнечных батарей занимают площадь около полутора тысяч квадратных метров. Они развивают мощность до тридцати киловатт, то есть могут питать электроэнергией сотню больших телевизоров или триста лампочек.

Во время экскурсии по Институту солнечной энергии вы наверняка обратите внимание на круглые вогнутые зеркала разных размеров - самые маленькие из них имеют диаметр около метра, самые большие - многометровые. Это концентраторы солнечной энергии. В одном из павильонов вы увидите, как с помощью большого зеркала-концентратора фокусируют солнечные лучи на небольшом тигле, поднимают в нем температуру до нескольких тысяч градусов и чистым солнечным лучом проводят плавку особо чистых металлов. В другом месте концентратор работает в паре с термоэлементом: помогает получать электрическую энергию.

Пока физики ищут более эффективные пути прямого преобразования тепла и света в электричество, инженеры пробуют применять для этой цели старую проверенную схему, включающую паровой котел, паровую турбину и обычный машинный электрогенератор. Коэффициент полезного действия классической системы тоже далек от ста процентов, но на тепловых электростанциях он все же ниже 30 процентов не опускается.

Главная проблема связана с тем, что к Земле приходит солнечное тепло, так сказать, низкого качества, низкотемпературное. Реально оно нагревает теплоприем-ники до 80-90 градусов, и поэтому парогенераторы солнечных электростанций могут быть созданы только при использовании низкокипящих жидкостей, например, фреона: он кипит, при температуре 57 градусов. Чтобы использовать обычную воду, нужно иметь температуры как минимум 200-220 градусов. Их можно получить, применив концентраторы солнечной энергии. Это в принципе могут быть линзы, фокусирующие солнечные лучи на сравнительно малой площадке, где температура оказывается во много раз больше, чем на поверхности линзы. Чаще в качестве концентраторов используются сферические зеркала, в фокус которых помещают нагреваемый объект. Зеркала могут быть стеклянные либо из полированного алюминия. Температура, которая получается в фокусе зеркала, зависит от его размеров и формы. В зависимости от конструкции она обычно составляет 200-300 или 2000-3000 градусов. Высокотемпературные солнечные концентраторы используются для сварки и выплавки металлов.

Наши соседи - узбекские физики и инженеры, - давно работающие над использованием солнечного тепла, создали передвижную гелиоустановку с пятиметровым зеркальным концентратором. В фокусе его находится электродинамический преобразователь, который дает энергию электрогенератору мощностью 500 ватт, а он питает электричеством осветительную сеть на 5-10 лампочек или насос водоподъемника, который может с глубины 20 метров за час поднять три тонны воды.

Французские инженеры, используя систему из большого числа зеркальных концентраторов, построили солнечную электростанцию мощностью в 65 киловатт, а в скором времени обещают ввести в строй аналогичную систему значительно большей мощности - на 3,5 тысячи киловатт. Такая станция, работающая в пустыне, сможет снабдить электричеством сельскохозяйственный поселок с населением в несколько сот жителей, имеющий собственный опреснитель воды.

Использование солнечной энергии ни в коем случае не ограничивается преобразованием ее в электричество. Создано немало простых и полезных устройств, в которых работает столь ценная солнечная продукция, как тепло. Например, небольшая солнечная кухня. В фокусе зеркала здесь могут закрепляться разнообразные насадки - кастрюли, сковородки, приспособления для популярных национальных кушаний. Установка позволяет за час вскипятить шесть литров воды, что особенно важно для пастухов в пустыне: они всегда мечтают о том, чтобы утолить жажду не холодной водой, а горячим зеленым чаем. Есть солнечная установка для сушки табака, овощей, фруктов. Или солнечный облучатель семян - установлено, что семена хлопчатника, прогретые импульсами сконцентрированного солнечного света, дают более высокие урожаи.

Используют солнечное тепло и для обеззараживания сточных вод - их для этого сильно нагревают, и за день установка площадью шесть квадратных метров дезинфицирует 10 кубометров воды. Важную работу выполняет Солнце, помогая строителям, создающим железобетонные конструкции. В Кашкадарьинской области на одном из комбинатов работает солнечная камера для пропаривания больших железобетонных панелей. Освещаемая солнцем поверхность камеры равна 100 метрам, температура в ней доходит до 80 градусов. Массивные панели приобретают необходимую прочность за двое суток, тогда как при естественной выдержке на воздухе потребовался бы целый месяц. А поскольку нагрев бетона осуществляется даровым солнечным теплом, себестоимость железобетонных изделий получается в два-три раза ниже, чем при прогревании его в печах, работающих на мазуте.

Все шире применяют солнечные подогреватели воды, они позволяют создать в домах колхозников или в чабанских жилищах, расположенных далеко в глубине пустынь, систему горячего водоснабжения. Такую же, как в комфортабельных городских квартирах, но только бесплатную, не требующую расхода топлива. Основная деталь водонагревателя, как и многих других солнечных машин, это теплообменник - плоский деревянный или металлический ящик, заполненный черным материалом с высокой теплоемкостью, внутри которого проходят трубки с водой. Такой горячий ящик - это, кстати, термин, узаконенный гелиотехникой, - доводит температуру воды до 60-70 градусов и за день собирает свыше 10 тысяч килоджоулей солнечной энергии с каждого квадратного метра своей поверхности. То есть средняя тепловая мощность каждого метра горячего ящика составляет примерно 300 ватт. Таким образом горячий ящик размером с обеденный стол за год может сэкономить 200 килограммов угля.

Одна из центральных проблем, с решением которой связаны возможные масштабы использования солнечного тепла, - это аккумулирование, накопление энергии. Использование таких установок, как солнечная кухня, находится в прямой зависимости от самого Солнца: как только оно зашло, кухня не работает. И вот появляется в водонагревательной установке солидных размеров бак для накапливания горячей воды, типичный тепловой аккумулятор.

Но тут же одновременно встают и типичные проблемы аккумулирования энергии - емкость бака должна быть достаточно большой, утечка тепла минимальной. К тому же выясняется, что хранить энергию в виде тепла не очень удобно: что ни делай, а нагретое тело остывает и постепенно все энергетические накопления сами собой исчезают.

Там, где солнечное излучение используется не непосредственно, а сначала превращается в электричество, там проблема накопления энергии решается сравнительно просто. В установку вводится обычный электрический аккумулятор. Когда солнце есть, он подзаряжается, когда солнца нет, аккумулятор сам отдает электроэнергию потребителям - водоподъемнику или опреснителю воды. Такая же система используется и в электроснабжении космических аппаратов, так что по своему принципу пустынная солнечная электроэнергетика ничуть не отличается от космической.

Наряду с электрическими аккумуляторами в гелиотехнике широко применяются и другие системы аккумулирования энергии. А кроме того, некоторые области использования солнечного тепла и света сами по себе, по самой своей сути обеспечивают накопление энергии. На большом институтском поле продолговатые и низкие стеклянные панели, очень напоминающие парники. Это экспериментальные солнечные опреснители воды, которые в Институте солнечной энергии исследуются и улучшаются, в то время как их "предки" уже много лет работают в пустыне.

В совхозе "Бахарден" урочища Овез-Ших в Центральных Каракумах стоит прижавшееся к пескам стеклянное сооружение размером чуть поменьше стадиона. Это первый в стране бахарденский опреснитель парникового типа, созданный 15 лет назад для водоснабжения далеких пустынных пастбищ. Примерно столько же работает большой парниковый опреснитель в Узбекистане, в совхозе "Шафрикан" Бухарской области. Принцип действия такого опреснителя предельно прост. Залитая в него соленая вода испаряется, освободившиеся от соли водяные пары конденсируются на внутренней стороне покатой стеклянной крыши и стекают в водосборный желоб. Таким образом накапливается полученная пресная вода, столь необходимая жителям пустыни.


Правда, слово "бесплатно" не очень уместно, парниковые опреснители, как и большинство гелиоустановок, в процессе работы не требуют каких-либо расходов, однако нужны немалые первоначальные капиталовложения на строительство парников с бетонированными резервуарами. К тому же производительность Солнца в такой системе не слишком высока - с каждого квадратного метра остекленной поверхности можно получить лишь несколько литров пресной воды в сутки. Вот почему в последнее время предпринимаются попытки объединить парниковое опреснение воды с другими, более выгодными процессами. На помощь приходит биология - производство пресной воды очень удачно сочетается с производством растительной пищи в условиях теплиц с управляемым микроклиматом. Опресненная вода частично сразу же направляется на полив растений, которым тоже достается немалая часть солнечного тепла и света. Так что опреснение оказывается бесплатным дополнением к обычному выращиванию овощей или ягод в парниках.

Подобные системы разрабатываются и начинают применяться во многих странах. В Соединенных Штатах Америки в пустынях штата Юта построены теплицы-опреснители площадью два гектара, а в пустыне штата Аризона - четыре гектара. В пустыне Руб-эль-Хали на берегу Персидского залива студентами Аризонского университета создана крупная установка, в которую входит 50 пластмассовых солнечных водонагревателей и 48 теплиц. Здесь получали с каждого гектара за один урожай почти 400 тонн томатов и более 700 тонн огурцов, которые обошлись дешевле, чем привезенные самолетом из соседних стран с мягким климатом.

В Ашхабаде в Институте пустынь и в Институте солнечной энергии проводятся работы по созданию теплиц с круговоротом влаги. В такой теплице, кроме привычных полок с растениями, размещены у самого края стеклянной крыши бетонированные желоба, куда со стекла стекает опресненная вода. Внутрь теплицы по трубам входит только соленая вода. Возможно, такие теплицы-опреснители войдут в широкую практику районов, богатых солеными водами. Но пока нужно тщательно исследовать все процессы, связанные с аккумулированием солнечной энергии как в опресненной воде, так и в самих растениях.

Задача всех этих исследований одна - создать теплицу с почти замкнутым циклом по воде, по возможности надежную и дешевую.

Существуют теплицы и с таким простым тепловым аккумулятором, как гравий. Им заполняют довольно объемистые желоба, над которыми расположены лотки с растениями. Днем гравий нагревается, для этого через него пропускают горячий воздух из верхних участков теплицы. А ночью вентилятор прогоняет сравнительно холодный воздух через сильно нагревшийся за день гравий, и благодаря этому средняя температура в теплице поднимается. В итоге растения получают больше тепла, растут быстрее и себестоимость их получается чуть ли не в два раза ниже, чем в обычной теплице без каменного теплового аккумулятора.

Гравий и крупные камни пробуют использовать в качестве аккумулятора солнечного тепла и на открытых посадках. В почву закапывают некоторое количество гравия так, чтобы верхний его слой выходил на поверхность. А дальше все идет по известному уже сценарию: днем гравий сильно нагревается, а ночью отдает тепло окружающей почве. В итоге сглаживаются резкие суточные колебания температуры почвы, что благоприятно сказывается на развитии растений, особенно на прорастании семян.

Во всем мире, в том числе и в нашей стране, проводится сейчас большой комплекс работ с целью приспособить солнечную энергию для обеспечения жилищ теплом или холодом. И холодильники и кондиционеры делают свое дело, обязательно затрачивая на это определенную энергию, довольно часто тепловую. В очень распространенных еще не так давно небольших бытовых холодильниках серии "Север" холод получают только с помощью тепла. Охлаждение здесь происходит при испарении аммиака, который циркулирует в теплообменном агрегате холодильника. Необходимую энергию аммиак получает от электрического нагревателя или даже от газовой горелки - такие варианты холодильника "Север" тоже выпускались.

Холодильные циклы, использующие солнечную энергию, уже применяются для охлаждения жилищ, для создания в них благоприятного микроклимата даже во время знойного среднеазиатского лета, когда сорок градусов в тени обычная температура. В некоторых системах используются растворы бромистого лития или хлористого кальция. Жидкий хладоноситель стекает по наклонной открытой крыше дома, где получает порцию солнечного тепла, необходимую для испарения воды и раствора. Затем сконцентрированный в результате испарения раствор поступает в абсорбционную холодильную машину, откуда охлажденная вода поступает в радиаторы, вмонтированные в потолок и стены, и охлаждает воздух в помещении.

Аналогичным образом работают солнечные отопители. Их теплообменные панели вмонтированы в стены и в крышу. Уже известные нам горячие ящики собирают солнечное тепло и передают его водяной системе отопления, радиаторы которой находятся в помещении. Ташкентский зональный научно-исследовательский институт типового и экспериментального проектирования совместно с Физико-техническим институтом Академии наук Узбекистана создали одноэтажный одноквартирный дом общей площадью 90 квадратных метров и жилой - 60 квадратных метров. Зимой для обогрева дома используется солнечное тепло. Вода, за день нагревшаяся в горячих ящиках, вмонтированных в крышу и южную стенку дома, передает тепло массивным аккумуляторам. Это большие массы гравпя, засыпанного в пространство между двойными внутренними стенами дома. Днем аккумуляторы нагреваются, а ночью отдают накопленное тепло. Одно из самых разумных технических решений, с которым мы встречаемся в этом доме, исходит из того, что Солнце не должно на все сто процентов обеспечить дом теплом. Если рассчитывать на всевозможные погодные неожиданности или на самые холодные дни, которые, правда, бывают редко, то система солнечного отопления неимоверно усложнится. Поэтому в солнечном доме предусмотрено резервное отопление за счет сжигания природного газа или жидкого топлива. Система резервного отопления состыкована с солнечным обогревом, и можно считать вполне удачным итог их взаимодействия - в помещениях всегда достаточно тепло, а 70 процентов энергии для обогрева получают бесплатно от Солнца.

Прогнозы зарубежных специалистов предсказывают широкое использование солнечного тепла для отопления уже в недалеком будущем. Причем наиболее перспективными считаются дома с комбинированным отоплением. В Соединенных Штатах проходят проверку несколько тысяч жилых и административных зданий, где Солнце помогает экономить минеральное топливо. Весьма перспективны подобные системы и для наших пустынь, хотя хотелось бы иметь универсальную солнечную машину, которая зимой давала бы тепло, а летом - холод.

Кстати, об аккумулировании тепла и холода. Большие надежды связаны с использованием веществ, которые, переходя из одного фазового состояния в другое, энергично отдают или потребляют тепло. Есть соединения металлов, которые при сравнительно низкой температуре плавятся, поглощая много тепловой энергии, а затем затвердевают и отдают тепло.

На территории Института солнечной энергии стоит довольно высокое трехэтажное здание с красивыми просторными балконами. Это экспериментальный девятиквартирный дом, в котором разместились институтские лаборатории. Дом служит главным образом для отработки систем, обеспечивающих внутри помещений комфортные условия за счет использования солнечной энергии. Одна из систем охлаждения помещений при сорокаградусной жаре на улице круглосуточно поддерживает в комнатах температуру 23 градуса.

Если дом используется как служебное здание и если в субботу и воскресенье системы охлаждения не работают, то даже в этом случае температура воздуха в комнатах не поднимается выше 25 градусов. А если в доме вообще выключить гелиотехническую систему микроклимата, то даже с учетом понижения внешней температуры в ночное время в комнатах будет очень жарко - примерно 34-36 градусов. Нужно сказать, что гелиотехнические системы комфортного климата в доме проходят испытания в сравнительно больших объемах - площадь помещений экспериментального солнечного дома 400 квадратных метров. В Ашхабаде уже построен 128-квартирный жилой дом с солнечным охлаждением.

В Институте солнечной энергии можно увидеть почти все, о чем мы упоминали, рассказывая об использовании одного из главных богатств пустыни - солнечного тепла и света. Как только въезжаешь на территорию института, то сразу же обращаешь внимание на красивую и довольно большую установку, в центре которой причудливо изогнутые толстые стеклянные трубки, наполненные зеленой массой. В установке идут эксперименты по выращиванию хлореллы. Чуть дальше несколько рядов низких парников с наклоненным стеклянным покрытием. Это экспериментальные опреснители парникового типа. Рядом с ними большие горячие ящики. Они созданы не только в самом институте, но в других научных и конструкторских коллективах. Каждый из образцов имеет свои особенности, в основном они различаются наполнителем, в котором уложены трубки теплообменника. Лучшим окажется тот наполнитель, который сумеет поглотить и передать циркулирующей воде больше солнечного тепла. В Ашхабад все эти горячие ящики прибыли для испытаний - устройства, созданные для жарких краев, должны проверяться в реальной рабочей обстановке.

Можно увидеть на территории института и теплицы-опреснители с замкнутым циклом использования воды. И новый одноэтажный дом, где отрабатываются системы солнечного отопления. И самые разные концентраторы солнечной энергии. Но есть такие объекты гелиотехнических исследований, которыми институт не занимается. Точнее, просто не может заниматься. Эти объекты находятся в сфере интересов ведущих исследовательских организаций страны, работающих в разных областях физики, химии, биологии, энергетики и тоже разрабатывающих некоторые фундаментальные проблемы, связанные с использованием энергии белого Солнца пустыни.

В числе исследований, которые могут в итоге превратить среднеазиатские пустыни в ценнейшие энергетические йлантации, можно назвать работы в области водородной энергетики. Живая природа чрезвычайно бережно и экономно использует солнечную энергию. В растениях мельчайшие порции солнечного излучения утилизируются для точно отлаженных химических превращений. Специалисты подумывают о том, чтобы и в технических устройствах использовать солнечный свет для получения определенных химических соединений, которые потом могли бы играть роль искусственного горючего. В качестве возможного кандидата называют один из окислов серы, который может образовываться из исходных продуктов - серы и кислорода - под действием солнечных излучений. Получившийся газ в дальнейшем легко соединяется с кислородом воздуха, то есть сгорает, выделяя более 5000 килоджоулей энергии на каждый кубометр. Это немало, хотя и в несколько раз меньше, чем теплотворная способность природного газа.

Другой возможный кандидат на роль синтетического топлива, полученного с помощью Солнца, водород. В последнее время он вообще стал объектом пристального внимания энергетиков. Многие из них полагают, что водород в будущем заменит углеводородное топливо, в частности нефть и уголь. В этом случае водород будут доставлять потребителям по трубам, как сейчас по проводам доставляют электрический ток. В числе достоинств водорода его рекордная калорийность: килограмм водорода при сгорании выделяет в несколько раз больше тепла, чем килограмм бензина. К тому же горение водорода не загрязняет окружающую среду: из выхлопной трубы автомобиля с водородным двигателем вылетает только обычная вода.

Среди многих проблем, стоящих на пути водородной энергетики, - получение самого водорода. Пока он обходится недешево и конкурировать с нефтью никак не может. И вот здесь, оказывается, помощь может прийти из пустыни. Один из самых известных способов получения водорода - электролиз воды. И в принципе можно найти такой режим процесса, который можно вести с помощью электричества, выработанного на солнечных электростанциях. Есть и другой перспективный процесс - фотолиз. В этом случае водород получают за счет расщепления молекул воды непосредственно солнечным излучением. К сожалению, прямой фотолиз в условиях Земли невозможен. Необходимое для него ультрафиолетовое излучение, на долю которого приходится чуть ли не половина всей энергии солнечных лучей, до Земли почти не доходит, поглощаясь в атмосфере. Но возможно получение водорода путем фотолиза с использованием некоторых промежуточных химических процессов, и этот путь энергично обсуждается специалистами.

Есть и вторая возможность создать в пустынях мощные энергетические базы. Это постройка больших фотоэлектрических электростанций, где бесшумно работают тихие и скромные полупроводниковые фотоэлементы. Мы уже говорили, что пока даже лучшие из них, кремниевые фотоэлементы, имеют слишком малый коэффициент полезного действия и стоят слишком дорого. Но несмотря на это в широкой печати уже обсуждаются проекты космических электростанций, на которых огромные панели солнечных батарей будут вырабатывать большие количества электроэнергии. Преобразованная в радиоволны или в свет, эта энергия по мощному радиолучу или по лучу лазера будет передаваться из космоса на Землю. Прогнозы, связанные с использованием таких космических фабрик электричества, относятся уже к следующему веку. И все они исходят из того, что к моменту, когда появится возможность строить такие огромные космические сооружения, будет решена и проблема полупроводниковых фотоэлементов. Они к тому времени, возможно, будут эффективными и дешевыми.

Создание мощных электростанций в космосе дело, бесспорно, перспективное, оно наверняка окажется по плечу столь быстро развивающейся космической науке и технике. Но хочется заметить, что если будет решена задача создания экономичных и эффективных фотоэлектрических преобразователей, то им можно.будет, видимо, найти достойную работу и на Земле. Во всяком случае, не так уж просто построить на космической электростанции панели солнечных батарей площадью в несколько десятков квадратных километров. А создать такую поверхность в богатых тепловыми ресурсами среднеазиатских пустынях никакого труда не составит.

Использование солнечной энергии в скромных масштабах осуществляется уже сегодня и даже имеет некоторую историю. В ближайшие годы из этого бесплатного источника энергию будут черпать в значительно больших количествах. Некоторые страны полагают к концу нашего столетия покрывать за счет Солнца 10, а может быть, и 20 процентов всех своих энергетических потребностей. Ясно, что особо благоприятные возможности для использования энергии Солнца существуют в пустынных регионах.

Все это позволяет надеяться, что высочайший энергетический потенциал пустынь будет в свое время освоен, что станет крупным завоеванием науки и техники, направляющих немало сил на то, чтобы поставить на службу человека богатства нашей планеты.

предыдущая главасодержаниеследующая глава









© ECOLOGYLIB.RU, 2001-2020
При использовании материалов сайта активная ссылка обязательна:
http://ecologylib.ru/ 'Зелёная планета - экология и охрана природы'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь